prof. Ing. Róbert Lórencz, CSc.

Pracoviště
ČVUT FIT, Katedra informační bezpečnosti
Výzkumná skupina
Applied Numerics & Cryptography Research Group
Osobní stránky
https://usermap.cvut.cz/profile/lorencz/
E-mail
robert.lorencz@fit.cvut.cz
Telefon
+420 22435 9812

Specializovaný hardware pro modulární aritmetiku

Dedicated Hardware for Modular Arithmetic

Cílem je návrh a implementace specializovaných hardwarových architektur pro výpočet modulárních aritmetických operací. Výsledky jsou použitelné v kryptografii eliptických křivek, stejně jako i v jiných systémech, které využívají modulární aritmetiku.

The aim is the design and implementation of dedicated hardware architectures for computing modular arithmetic operations. The results are applicable in elliptic curve cryptography, as well as in other systems that utilize modular arithmetic.

Post-kvantová kryptografie

Post-quantum cryptography

Studium vhodných post-kvantových kryptosystémů je již dlouhodobě v zájmu kryptologů. Důvodem jsou zdárně se rozvíjející technologie kvantových počítačů, které by mohly svými vlastnostmi za použití vhodných faktorizačních algoritmů ohrozit bezpečnost asymetrických kryptosystémů.

Téma dizertační práce je studium a analýza stávajících a návrh nových metod kryptografických post-kvantových algoritmů. Cílem je vytvořit takový asymetrický kryptosystém, který by byl odolný vůči útokům za použití kvantových počítačů a byl by implementačně jednoduchý a bezpečný.

Jedním z kandidátů post-kvantových kryptosystémů vhodných pro analýzu a případnou úpravu je asymetrický šifrovací algoritmus McEliece založený na binárních Goppa kódech. Tento algoritmus vyhovuje bezpečnostním požadavkům kladeným na asymetrické kryptosystémy dnešní doby, avšak je zde problém s jeho velkou prostorovou složitostí. Snaha o zkrácení velikosti klíčů u tohoto algoritmu muže být dobrou počáteční výzvou pro další výzkum.

The study of suitable post-quantum cryptosystems has long been in the interest of cryptologists. The reason for this is the thriving field of quantum computer technology, which could endanger the security of asymmetric cryptosystems by using suitable factorization algorithms.

The topic of the dissertation is the study and analysis of existing and new methods of post-quantum cryptographic algorithms. The goal is to create an asymmetric cryptosystem that is resistant against quantum-based attacks and is simple to implement and secure.

One of the candidates for post-quantum cryptosystems suitable for analysis and eventual improvement is the McEliece asymmetric encryption algorithm based on binary Goppa codes. This algorithm complies with the security requirements for asymmetric cryptosystems of today, but there is a problem with its large spatial complexity. Trying to reduce the size of the keys in this algorithm can be a good initial challenge for further research.

Algebraická kryptoanalýza

Algebraic cryptanalysis

Kryptoanalýza je důležitou součástí kryptologie zabývající se bezpečnosti šifer. Jednou z nejzákladnějších metod kryptoanalýzy pracující s párem otevřený – šifrový text je algebraická kryptoanalýza. Metody algebraické kryptoanalýzy můžou včas odhalit principiální slabiny stávajících nebo nově vytvořených šifer.

Téma dizertační práce je studium a návrh kryptoanalytických metod založených na Gröbnerových bázích, které jsou vhodné pro paralelní implementaci. Cílem práce by měla být efektivně pracující kryptoanalytická metoda použitelná pro testování bezpečnosti různých typu šifer.

Cryptanalysis is an important part of cryptology dealing with cipher security. One of the most basic methods of cryptanalysis working with pairs of plaintext and ciphertext is the algebraic cryptanalysis. Methods of algebraic cryptanalysis can provide early detection of weaknesses of existing or newly created ciphers.

The topic of the thesis is the study and design of cryptanalytic methods based on Gröbner bases, which are suitable for parallel implementation. The aim of this work should be an efficient cryptanalytic method usable for security testing of different types of ciphers.

Detekce malware

Malware detection

Škodlivý kód neboli malware patří v dnešní době mezi největší bezpečnostní hrozby. Každodenně se vygeneruje ohromné množství nového škodlivého kódu, a protože není možné analyzovat každý vzorek zvlášť, je potřeba vyvinout automatické mechanismy, které by ho dokázaly detekovat. Ukazuje se, že algoritmy strojového učení jsou vhodným nástrojem pro automatickou detekci malware. Pomocí nich je možné detekovat i zero-day malware, avšak na rozdíl od standardních postupů, jako je detekce založena na signaturách, dosahují vyšší false positive (FP). Cílem dizertační práce bude vyvinout automatický systém pro detekci malware dosahující solidní přesnost klasifikace a mající minimální FP.

Malicious code or malware is one of the biggest security threats today. A huge amount of new malicious code is generated every day, and since it is not possible to analyze each sample separately, it is necessary to develop automatic mechanisms to detect it.

Machine learning algorithms turn out to be a useful tool for automatic detection of malware. With them, zero-day malware can also be detected, but in contrast to standard procedures such as signature-based detection, they achieve higher false positive (FP) ratio. The aim of the dissertation will be to develop an automatic malware detection system that achieves a solid classification accuracy and has a minimum FP.

Studium chování fyzikálně neklonovatelných funkcí (PUF) a generátorů skutečně náhodných čísel (TRNG)

Study of the behavior of physically unclonable functions (PUFs) and true random number generators (TRNGs)

Současné hardwarové komponenty kryptografických systémů se neobejdou bez kvalitních TRNG. Rovněž jsou žádané spolehlivé generátory klíčů, které jsou založené na PUF. Takové generování klíčů je z hlediska bezpečnosti velmi žádané, a to proto, že tímto způsobem vygenerovaný klíč zůstává „tajemstvím“ samotného hardware kryptosystému.

Téma dizertační práce je studium chování navržených PUF a TRNG z hlediska jejich dlouhodobé stabilní odezvy. Cílem práce je prozkoumat stávající a navrhnout nová řešení PUF a TRNG, která jsou vhodná pro účely dlouhodobého generování kvalitního výstupu u TRNG, a která dávají rovněž garanci stabilního generování klíčů vycházejícího z odezev PUF. Práce zahrnuje studium a pochopení chování těchto komponent na statistické úrovni a taktéž na úrovni fyziklální/technologické.

A quality TRNG is essential for current hardware components of cryptographic. Reliable key generators based on PUF are also required. Such key generation is very much in demand, because the key generated in this way remains the "secret" of the cryptosystem hardware itself.

The topic of the dissertation is the study of the proposed PUF and TRNG in terms of their long-term stable response. The aim of this work is to explore existing and propose new PUF and TRNG solutions that are suitable for long-term generation of high-quality output by TRNG and which also guarantee stable key generation based on PUF responses. The work includes the study and understanding of the behavior of these components at the statistical level and also at the physical/technological level.

Modelování chování polovodičových komponent vlivem ionizujícího záření

Modeling behavior of semiconductor components due to ionizing radiation

Chování různých obvodů založených na polovodičích je kromě jiných faktorů závislé taktéž na prostředí, ve kterém jsou provozovány. Žádanou informací pro uživatele různých HW zařízení je spolehlivost těchto zařízení v závislosti na stáří, a s tím do určité míry související odolnost polovodičových komponent vůči ionizujícímu záření.

Téma dizertační práce je matematické modelování chování HW polovodičových komponent na různé technologické úrovni v závislosti na ozáření ionizujícím/korpuskulárním zářením. Cílem práce je vytvořit model chování HW zařízení zahrnující faktory stárnutí a degradace materiálů vlivem ozařování. Výsledky budou využitelné pro určení spolehlivosti/doby bezchybné funkcionality obvodů vystavených ozáření nebo dlouhodobému používání.

The behavior of various semiconductor circuits is also dependent, among other factors, on the environment in which they operate. Desirable information for users of various HW devices is the reliability of these devices on age, and to some extent the associated resistance of the semiconductor components to ionizing radiation.

The topic of the dissertation is mathematical modeling of the behavior of HW semiconductor components at various technological levels, depending on irradiation with ionizing/particulate radiation. The aim of this work is to create a model of HW device behavior including aging factors and material degradation due to radiation. The results will be useful for determining the reliability/error-free lifetime of circuitry exposed to radiation or long-term use.

Algoritmy kryptoměn

Cryptocurrency algorithms

Kryptoměny jsou novým fenoménem, který je založený na decentralizaci a umožňuje nám anonymní platby. V dnešní době existuje přes tisíc kryptoměn, které jsou založené na různých konceptech, jako jsou např. proof-of-work nebo proof-of-stake.

Cílem bude navrhnout novou kryptoměnu, která by splňovala bezpečnostní požadavky i požadavky trhu jako jsou škálovatelnost, dostatečná rychlost zpracování transakcí, nízká latence a byla by šetrná k životnému prostředí.

Cryptocurrencies are a new phenomenon that is based on decentralization and allows us to make anonymous payments. Today, there are over a thousand cryptocurrencies that are based on different concepts such as proof-of-work or proof-of-stake.

The goal will be to design a new cryptocurrency that would meet both security and market requirements such as scalability, sufficient transaction processing speed, low latency, and would be environmentally friendly.

Mixed-radix conversion (MRC) algoritmus pro převod výsledků ze soustavy lineárních kongruencí do soustavy lineárních rovnic

Mixed-radix conversion (MRC) algorithm for converting results from a system of linear congruences into a system of linear equations

Řešení celočíselné soustavy lineárních rovnic (SLR) bez zaokrouhlovacích chyb lze provést pomocí rozdělení řešení do soustav lineárních kongruencí (SLK) a následného převodu výsledků do množiny řešení původní SLR. K tomuto převodu se používá tzv. MRC algoritmus, který má složitost O(nm2), kde n je dimenze matice a m je počet použitých SLK (modulů).

Cílem práce je nalézt efektivnější způsob použití MRC algoritmu, který těží ze znalosti vzájemné datové závislosti řešení SLR. Rovněž je možné navrhnout zparalelnění nově navrženého algoritmu. Výsledkem je metoda založená na MRC pracující s menší složitostí než O(nm2) pro řešení zpětného převodu výsledků SLK na výsledky SLR.

The solution of an integer system of linear equations (SLE) without rounding errors can be done by dividing the solving process into systems of linear congruences (SLC), and then converting the results into a set of solutions of the original SLE. The so-called MRC algorithm is used for this conversion, which has the complexity O(nm2), where n is the matrix dimension and m is the number of SLK (modules) used.

The aim of this work is to find a more efficient way of using the MRC algorithm that benefits from the knowledge of mutual data dependency of the SLE solution. It is also possible to design a parallelization of the newly designed algorithm. The result is an MRC-based method with less than O(nm2) complexity for solving the conversion process of SLC results to SLE results.

Kombinované útoky na kryptografické moduly

Combined attacks on cryptographic modules
Školitel specialista
Ing. Jiří Buček, Ph.D.

V oblasti hardwarových kryptografických zařízeních probíhá neustálá soutěž mezi vývojem nových útoků a naopak obran proti nim. Útok má obvykle za cíl odhalit tajnou informaci, například tajný symetrický klíč, soukromý klíč nebo tanou zprávu. Jeden z relativně nových přístupů útoku je kombinace metod pasivních a aktivních útoků na kryptografické zařízení.

Cílem práce je prozkoumat nové možnosti kombinace aktivních a pasivních fyzických útoků s poznatky z lineární, diferenciální nebo algebraické kryptoanalýzy.

In the field of hardware cryptographic devices, there is a continual competition between the development of new attacks and, on the contrary, defenses against them. An attack usually aims to reveal secret information, such as a secret symmetric key, a private key, or a message. One of the relatively new attack approaches is a combination of passive and active attacks on cryptographic devices.

The aim of this work is to explore new possibilities of combination of active and passive physical attacks with knowledge of linear, differential or algebraic cryptanalysis.



Poslední změna: 26.4.2019, 12:31